

the diagram). a. What is the acceleration of the mass along the table?

FF =
$$M_K$$
 FN
= $(0.300)(200N) = 60 N$
b. What is the tension in the string?

FE= MKFN

FF= ALFN

Turnel Vision

$$\frac{1.9 \text{ M/s}^2}{128 \text{ N}^{-1}} = \frac{128 \text{ N}^{-1}}{12 \text{ kg}}$$

 \checkmark A box of mass m_1 sits on a table. It is connected, by a rope drawn through a pulley, to a box $m_2 = 2.10$ kg that is hanging off the side of the table. (Note that box m₂ does not touch the table in any way.) The coefficient of friction between mass m_1 and the table is 0.295. If the acceleration is 2.00 m/s²:

a. What is the tension in the rope?

b. What is the mass of m_1 ?