Resolving Forces

Angle

What if an applied force is at an angle above the horizontal?

- Fn
- F_app
- F_y
- F_x
- Fn < F_y
- F_n = F_y
- \(F_y = 75 \text{ kg}(9.8 \text{ m/s}^2) = 735 \text{ N} \)
- F_y = F_n = 735 \text{ N}

Calculating F_y and F_n

1. **Without angles (Practice #1)**
 a. Draw the Free-Body Diagram
 b. Label forces
 c. Place mass inside box
 d. Calculate \(F_y = m \times g \)
 - Mass multiplied by 9.8 m/s^2
 e. Determine F_n
 a. Net force = 0
 b. Therefore \(F_y = F_n \)

2. **With angles (Practice #2)**
 a. Draw the Free-Body Diagram
 b. Include force at angle
 c. Calculate \(F_y = m \times g \)
 - Mass multiplied by 9.8 m/s^2
 d. Calculate components of force at an angle
 e. Redraw diagram with components (no forces of angles)
 f. Calculate Fn
 \[F_n + F_x = F_y \]
 \[F_n + 3.4 \times 933 \text{ N} = 333 \text{ N} \]